Chel-remont174.ru

Ремонт 174
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчетное сопротивление кладки на смятие Rс следует определять по формуле

7.14 Расчетное сопротивление кладки на смятие Rс следует определять по формуле

ξ1 коэффициент, зависящий от материала кладки и места приложения нагрузки, определяется по табл.22.

ξ1, для нагрузок по схеме

Рисунок 9, а, в, вl, д, ж

Рисунок 9, б, г, е, и

сумма местной и

сумма местной и

1 Полнотелый кирпич, сплошные камни и крупные блоки из тяжелого бетона или бетона на пористых заполнителях класса В3,5 и выше

2 Керамические кирпич и камни с

пустотами (кроме крупноформатных),

3 Пустотелые бетонные камни и блоки. Сплошные камни и блоки из бетона М35. Камни и блоки из

Ячеистого бетона и природного камня

4 Для всех типов кладки при растворе

1 Для кладок всех видов на неотвердевшем растворе или на замороженном растворе в период его оттаивания при зимней кладке, выполненной способом замораживания, принимаются значения ξl, указанные в позиции 3 настоящей таблицы.

2 Для кирпича, камней и блоков пустотностью более 25 % значение коэффициента ξl принимается равным 1.

3 Для керамических поризованных крупноформатных камней значение коэффициента ^ принимается эавным 0,8.

4 Для полистиролбетонных блоков значение ξl принимаются по экспериментальным данным._______

При расчете на смятие кладки с сетчатым армированием расчетное сопротивление кладки Rс принимается в формуле (17) большим из двух значений: Rс, определяемого по формуле (18) для неармированной кладки, или Rс = Rsk, где Rsk расчетное сопротивление кладки с сетчатым армированием при осевом сжатии, определяемое по формуле (27) или (28).

7.15 При одновременном действии местной (опорные реакции балок, прогонов, перекрытий и т.п.) и основной нагрузок (вес вышележащей кладки и нагрузка, передающаяся на эту кладку) расчет производится раздельно на местную нагрузку и на сумму местной и основной нагрузок, при этом принимаются различные значения ξl согласно таблице 22.

При расчете на сумму местной и основной нагрузок разрешается учитывать только ту часть местной нагрузки, которая будет приложена до загружения площади смятия основной нагрузкой.

Примечание — В случае, когда площадь сечения достаточна для восприятия одной лишь местной нагрузки, но недостаточна для восприятия суммы местной и основной нагрузок, допускается устранять передачу основной нагрузки на площадь смятия путем устройства промежутка или укладки мягкой прокладки над опорным концом прогона, балки или перемычки.

7.16 Расчетная площадь сечения А определяется по следующим правилам:

а) при площади смятия, включающей всю толщину стены, в расчетную площадь смятия включаются участки длиной не более толщины стены в каждую сторону от границы местной нагрузки (см. рисунок 9, а);

Читайте так же:
Когда выйдет книга еще один кирпич

б) при площади смятия, расположенной на краю стены по всей ее толщине, расчетная площадь равна площади смятия, а при расчете на сумму местной и основной нагрузок принимается также расчетная площадь, указанная на рисунок 9, б пунктиром;

в) при опирании на стену концов прогонов и балок в расчетную площадь смятия включается площадь сечения стены шириной, равной глубине заделки опорного участка прогона или балки и длиной не более расстояния между осями двух соседних пролетов между балками (рисунок 9, в); если расстояние между балками превышает двойную толщину стены, длина расчетной площади сечения определяется как сумма ширины балки bс и удвоенной толщины стены h (рисунок 9, вl);

г) при смятии под краевой нагрузкой, приложенной к угловому участку стены, расчетная площадь равна площади смятия, а при расчете на сумму местной и основной нагрузок принимается расчетная площадь, ограниченная на рисунок 9, г пунктиром;

д) при площади смятия, расположенной на части длины и ширины сечения, расчетная площадь принимается согласно рисунок 9, д. Если площадь смятия расположена вблизи от края сечения, то при расчете на сумму местной и основной нагрузок принимается расчетная площадь сечения, не меньшая, чем определяемая по рисунок 9, г, при приложении той же нагрузки к угловому участку стены;

е) при площади смятия, расположенной в пределах пилястры, расчетная площадь равна площади смятия, а при расчете на сумму местной и основной нагрузок принимается расчетная площадь, ограниченная на рисунке 9, е пунктиром;

ж) при площади смятия, расположенной в пределах пилястры и части стены или простенка, увеличение расчетной площади по сравнению с площадью смятия следует учитывать только для нагрузки, равнодействующая которой приложена в пределах полки (стены) или же в пределах ребра (пилястры) с эксцентриситетом ео>1/6L в сторону стены (где L длина площади смятия, ео эксцентриситет по отношению к оси площади смятия). В этих случаях в расчетную площадь сечения включается кроме площади смятия часть площади сечения полки шириной С, равной глубине заделки опорной плиты в кладку стены и длиной в каждую сторону от края плиты не более толщины стены (рисунок 9, ж);

з) если сечение имеет сложную форму, не допускается учитывать при определении расчетной площади сечения участки, связь которых с загруженным участком недостаточна для перераспределения давления (участки 7 и 2 на рисунке 9, з).

Примечание -Во всех случаях, приведенных на рисунке 9, в расчетную площадь сечения А включается площадь смятия Ас.

Читайте так же:
Название камни с кирпичом

Рисунок 9 — Определение расчетных площадей сечений при смятии

7.17 При опирании на край кладки изгибаемых элементов (балок, прогонов и т. п.) без распределительных плит или с распределительными плитами, которые могут поворачиваться вместе с концами элемента, длина опорного участка элемента должна приниматься по расчету. При этом плита обеспечивает распределение нагрузки только по своей ширине в направлении, перпендикулярном изгибаемому элементу.

Указания настоящего пункта не распространяются на расчет опор висячих стен, который производится согласно 7.13 и 9.5.

1 При необходимости увеличения площади смятия под опорными плитами следует укладывать на них стальные прокладки, фиксирующие положение опорного давления.

2 Конструктивные требования к участкам кладки, загруженным местными нагрузками, приводятся в 9.40-9.43.

Расчёт на внецентренное сжатие простенка из керамического кирпича по нелинейной деформационной модели

Материал – кирпич керамический на ц.п. растворе. Марка кирпича М125, марка раствора М100. Расчётное сопротивление кладки сжатию R=20.3943 кгс/см 2 , Rt=0.815773 кгс/см 2 , Ru=2*R=2*20.3943=40.7886 кгс/см 2 , Rtu=2*Rt=2*0.815773=1.631546 кгс/см 2 . Размеры простенка b=100 см, h=38 см. Высота простенка l=290 см. По результатам определения внутренних усилий в сечении простенка возникают следующие усилия: N=16.057 т, изгибающие моменты Мх=0.314 т*м, Му=0 т*м, поперечные силы, Qx=0 т, Qy=0.18 т; Изгибающий момент действует в направлении стороны h.

Определение деформационных характеристик кладки

Модуль деформации неармированной кладки при сжатии E=α*Ru=1000*40.7886=40788.6 кгс/см 2 .

Относительные деформации кладки при сжатии ε=R/E=20.3943/40788.6=0.0005

Относительные деформации для нелинейных расчётов

mas_05_f1.png

Определение предельных деформаций при сжатии

mas_05_f2.png

Модуль деформации неармированной кладки при растяжении Et=α*Rtu=1000*1.631546=1631.546 кгс/см 2 .

Относительные деформации кладки при растяжении εt=R/E=0.815773/1631.546=0.0005

Относительные деформации для нелинейных расчётов

mas_05_f3.png

Определение предельных деформаций при растяжении

mas_05_f4.png

Расчёт на внецентренное сжатие в плоскости изгиба

По п.7.7 Расчет внецентренно сжатых неармированных элементов каменных конструкций следует производить по формуле

mg=1 — коэффициент, учитывающий влияние длительной нагрузки и определяемый по формуле (16). При толщине стены более 30 см, принимается равным 1.

φ — коэффициент продольного изгиба для всего сечения в плоскости действия изгибающего момента, определяемый по расчетной высоте элемента l.

Для l=290 см, ix=0.289*38=10.982 см, α=1000, по таблице 19, при λ=l/ix=290/10.982=26.407, φ=0.92910

αn
1000
λn210.96
λi26.4070.92910
λn+1280.92

φс — коэффициент продольного изгиба для сжатой части сечения, определяемый по фактической высоте элемента Н по таблице 18 в плоскости действия изгибающего момента при гибкости:

где hс и iс — высота и радиус инерции сжатой части поперечного сечения Ас в плоскости действия изгибающего момента.

Читайте так же:
Герметик для затирки швов кирпича

Площадь сжатой части сечения определяется по результатам расчёта по нелинейной деформационной модели.

mas_05_1.png

A=b*h=3800 см 2 — площадь поперечного сечения простенка;

e0x=Mx/N=0.314/16.057=1.955533 см — эксцентриситет расчётной силы N относительно центра тяжести сечения;

ev=0 см — случайный эксцентриситет продольной силы, для несущих стен толщиной 25 см и более не учитывается.

Высота сжатой части сечения hcx=Ac/b=38 см;

Радиус инерции сжатой части сечения icx=0.289*hcx=0.289*38=10.982 см, λcx=l/icx=290/10.982=26.407, φcx=0.92910

αn
1000
λn210.96
λi26.4070.92910
λn+1280.92

Коэффициент продольного изгиба: φ1x=(φxcx)/2=(0.92910+0.92910)/2=0.9291

Коэффициент ω=1+(ex+ev)/h=1+(1.955533+0)/38=1.051461 — для кладки из керамического кирпича

Подставляя данные в формулу прочности простенка, получаем:

Коэффициент запаса 75.70909/16.057=4.715020894

Расчёт на центральное сжатие из плоскости изгиба

По п.7.1 Расчет внецентренно сжатых неармированных элементов каменных конструкций следует производить по формуле (10):

Определение коэффициента продольного изгиба

Для l=290 см, iy=0.289*100=28.9 см, α=1000, по таблице 19, при λ= l/iy=290/28.9=10.03, φ1.

Подставляя значения в формулу (10), получаем:

Коэффициент запаса 77.4983/16.057=4.826452

Характеристики материалов каменных конструкций, заданных для расчёта в программе

Расчёт в ПК ЛИРА САПР, выполняется по СП 15.13330.2012 по нелинейной деформационной модели кладки.

Расчет кирпичной перегородки на сейсмику 7 балов

Кирпичная перегородка толщиной 120 мм длиной 6000 мм, высотой 5000 мм. Перегородка выполнена из кирпича марки М75 на растворе марки М50 армированная арматурой ø5 ВрI , оштукатурена с 2-х сторон по 20 мм, расчетная сейсмичность 7 баллов.

Определение допустимой высоты стены.

Отношение высоты к толщине кирпичной перегородки не должны превышать указанных в п. 9.17-9.20 СП 15.13330.2012

Согласно п. 9.19 отношение β может быть увеличено на коэффициент К=1.2 по таблице 30

h=120 мм – толщина кирпичной перегородки

H=5000≤βh=25∙1,2∙120=3600 – условие не выполняется, необходимы раскрепляющие стойки.

При L≤kβh=1,2∙25∙120=3600 высота кирпичной перегородки неограниченна.

Примем шаг раскрепляющих стоек 3000 мм.

    Определение усилий в стене от действия местной сейсмической нагрузки.

Величину местной сейсмической нагрузки определяем по формулам (1) и (2) СП14.13330.2014

K = 1,5 – коэффициент, учитывающий назначение сооружения и его ответственность, принимаемый по таблице 3 СП 14.13330.2014.

К1 =0,4 – коэффициент, учитывающий допускаемые повреждения зданий и сооружений, принимаемый по таблице 4 СП14.13330.2014.

– коэффициент надежности по ответственности

– коэффициент надежности по нагрузки для штукатурного слоя

– коэффициент сочетания нагрузок

=3,8 – произведение коэффициентов принято по табл. 4 Инструкции по определению расчетной сейсмической нагрузки для зданий и сооружений( второй этаж 2-ух этажного здания).

Читайте так же:
Гидропресс для производства кирпич

S=1,5∙0,4∙1042=714 Н⁄м 2

Расчетную схему стены принимаем как шарнирно опертую балку в направлении короткого пролета

Расчетный изгибающий момент формуле

M=804 Нм = 8040 кг∙см.

При расчете, в запас прочности, ведем расчет без учета работы арматуры в сжатой зоне сечения. Подбор сечения арматуры проводим по указаниям п 3.19 пособия к СП 52-101-2003 как для прямоугольного сечения b=1м, h=12 см, h0=10 см.

На основании пункта 7.30 СП 15.13330.2012 исходя из минимального процента армирования( не менее 0,1%) определяем:

По таблице 6.14 СП 63.13330.2012 принимаем расчетное сопротивление арматуры из стали класса Вр500, Rs=415 Мпа = 4150 кг/см 2

По таблице 2 СП 15.13330.2012 принимаем расчетное сопротивление кирпичной кладки RK=1,3Мпа = 13 кг/см 2

По формуле 3.16 пособия к СП 52-101-2003 определяем высоту сжатой зоны:

– условие выполняется, прочность кладки обеспечена

    Расчет раскрепляющих стоек.

Расчетную схему стойки примем как шарнирно опертую балку. Определение нагрузок на балку

1) При шаге раскрепляющих стоек 3 м высота кирпичной перегородки толщиной 120 мм неограниченна. Минимальный профиль раскрепляющих стоек в зависимости от высоты кирпичной перегородки приведен в таблице

Несущая способность щелевого кирпича

расчет несущей стены

В статье представлен пример расчета несущей способности кирпичной стены трехэтажного бескаркасного здания с учетом выявленных в ходе ее осмотра дефектов. Подобные расчеты относятся к категории «проверочных» и выполняются обычно в рамках детального визуально-инструментального обследования зданий.

Несущая способность центрально- и внецентренно — сжатых каменных столбов определяется на основании данных о фактической прочности материалов кирпичной кладки (кирпича, раствора) в соответствии с разделом 4 [1].

Для учета выявленных в ходе обследования дефектов в формулы СНиП вводится дополнительный понижающий коэффициент, учитывающий снижение несущей способности каменных конструкций (Ктр) в зависимости от характера и степени обнаруженных повреждений по таблицам гл. 4 [2].

ПРИМЕР РАСЧЕТА

Проверим несущую способность внутренней несущей каменной стены 1-го этажа по оси «8» м/о «Б»-«В» на действие эксплуатационных нагрузок с учетом выявленных в ходе ее обследования дефектов и повреждений.

Исходные данные:

— Толщина стены: dст=0,38 м
— Ширина простенка: b=1,64 м
— Высота простенка до низа плит перекрытий 1 этажа: H=3,0 м
— Высота вышележащего столба кладки: h=6,5 м
— Площадь сбора нагрузок от перекрытий и покрытия: Sгр=9,32 м2
— Расчетное сопротивление кладки cжатию: R=11,05 кг/см2

В ходе осмотра стены по оси «8» зафиксированы следующие дефекты и повреждения (см. фото ниже): массовое выпадение раствора из швов кладки на глубину более 4 см; смещение (искривление) горизонтальных рядов кладки по вертикали до 3 см; множественные вертикально ориентированные трещины раскрытием 2-4 мм (в т.ч. по растворным швам), пересекающие от 2 до 4 горизонтальных рядов кладки (до 2-х трещин на 1 м стены).

Читайте так же:
Кирпич во весь экран
расчет запаса прочностидефекты стенрасчет простенка
ПустошовкаРастрескивание кирпичаИскривление рядов кладки

По совокупности выявленных дефектов (с учетом их характера, степени развития и площади распространения), в соответствии с [2], несущая способность рассматриваемого простенка должна быть снижена не менее чем на 30%. Т.е. коэффициент снижения несущей способности простенка принимается равным — Ктр=0,7. Схема для сбора нагрузок на простенок приведена ниже на Рис.1.

сбор нагрузок

РИС.1. Схема для сбора нагрузок на простенок

I. Сбор расчетных нагрузок на простенок

1. Перекрытия 1 и 2 этажей [784 кг/м2 × 9,32 м2 × 2]14 613,7 кгс
2. Покрытие [763,6 кг/м2 × 9,32 м2]7 116,75 кгс
3. Вышележащий кирпичный столб [1,64 м × 0,38 м × 6,5 м × 1800 кг/м3 × 1,1]8 020,58 кгс
4. Кирпичные перегородки 2, 3 этажей [3,2 м × 0,25 м × 5,2 м × 1800 кг/м3 × 1,1]6 589,44 кгс
ИТОГО общая нагрузка на простенок N, кгс:36 340,5 кгс

II. Расчет несущей способности простенка

(п. 4.1 СНиП II-22-81)

Количественная оценка фактической несущей способности кирпичного центрально сжатого простенка (с учетом влияния обнаруженных дефектов) на действие расчетной продольной силы N, приложенной без эксцентриситета, сводится к проверке выполнения следующего условия (формула 10 [1]):

Согласно результатам прочностных испытаний расчетное сопротивление кладки стены по оси «8» сжатию составляет R=11,05 кг/см2.
Упругая характеристика кладки согласно п.9 Таблицы 15(К) [1] равна: α=500.
Расчетная высота столба: l0=0,8×H=0,8×300=240 см.
Гибкость элемента прямоугольного сплошного сечения: λh=l0 / dст=240/38=6,31.
Коэффициент продольного изгиба φ при α=500 и λh=6,31 (по Таблице 18): φ=0,90.
Площадь поперечного сечения столба (простенка): A=b×dст=164×38=6232 см2.
Т.к. толщина рассчитываемой стены более 30 см (dст=38 см), коэффициент mg принимается равным единице: mg=1.

Подставив полученные значения в левую часть формулы (1), определим фактическую несущую способность центрально-сжатого неармированного кирпичного простенка :

Nс=1×0,9×11,05×6232×0,7=43 384 кгс

III. Проверка выполнения условия прочности (1)

[ Nc=43384 кгс ] > [ N=36340,5 кгс ]

Условие прочности выполнено: несущая способность кирпичного столба с учетом влияния выявленных дефектов оказалась больше значения суммарной нагрузки N.

Список источников:
1. СНиП II-22-81* «Каменные и армокаменные конструкции».
2. Рекомендации по усилению каменных конструкций зданий и сооружений. ЦНИИСК им. Курченко, Госстрой.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector