Chel-remont174.ru

Ремонт 174
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Виды коррозии портландцементного камня. Способы защиты цементного камня от действия агрессивных вод

Виды коррозии портландцементного камня. Способы защиты цементного камня от действия агрессивных вод.

Бетон в инженерных сооружениях в процессе эксплуатации может быть подвержен агрессивному воздействию внешней среды: пресных и минерализованных вод, совместному действию воды и мороза, попеременному увлажнению и высушиванию. Следовательно, для того чтобы бетон стойко сопротивлялся агрессивному воздействию внешней среды, цементный камень должен быть водостойким, морозостойким и атмосферостойким.

Водостойкость цементного камня.

Коррозия цементного камня в водных условиях может быть подразделена на три вида.

разрушение цементного камня в результате растворения и вымывания некоторых его составных частей.

Несколько предохраняет от данного вида коррозии защитная корка из углекислого кальция, образующаяся на поверхности бетона в результате реакции между гидроокисью кальция и углекислотой воздуха

Следующей мерой защиты бетона от коррозии этого вида является применение цемента, выделяющего при своем твердении минимальное количество свободной Са(ОН)2. Это белитовый цемент, содержащий небольшое количество трехкальциевого силиката.

разрушение цементного камня водой, содержащей соли,

Если же ее связать в другое, труднорастворимое соединение, сопротивление бетона коррозии этого вида должно возрасти, что наблюдается при использовании активных минеральных добавок.

процессы, возникающие под действием сульфатов.

Мера защиты бетона от сульфатной коррозии логически вытекает из существа этого процесса, а именно, цемент с низким содержанием трехкальциевого алюмината должен обладать повышенной сульфато-стойкостью.

Защита цементного камня от коррозии в водных условиях

Исключить или ослабить влияние коррозионных процессов при действии различных вод можно конструктивными мерами, улучшением технологии приготовления бетона, а также применением цементов определенного минералогического состава клинкера и состава по содержанию активных минеральных добавок.

—Конструктивными мерами предотвратить действие воды на бетонную конструкцию можно путем устройства гидроизоляции, водоотводов и дренажей.

—Повышение водостойкости бетона технологическими средствами достигается интенсивным уплотнением бетона при укладке или формовании, использованием бетонных смесей с минимальным водоцементным отношением и тщательно подобранным зерновым составом заполнителей.

— Получать коррозионностойкие цементы можно путем соответствующего подбора минералогического состава клинкера.

— Увеличить стойкость бетона в агрессивной среде можно карбонизацией.

Морозостойкость цементного камня

Совместное попеременное действие воды и мороза влечет за собой разрушение бетонных сооружений. При отрицательных температурах вода, находящаяся в порах цементного камня, превращается в лед, который увеличивается в объеме примерно на 10%, давит на стенки пор и разрушает, их.

Морозостойкость цементного камня зависит от минералогического состава клинкера, тонкости помола цемента и водоцементного отношения.

Таким образом, для увеличения морозостойкости бетона необходимо применять цементы с низким содержанием СЗА и минимальным содержанием активных минеральных добавок, а также использовать бетонные смеси с возможно меньшим водоцементным отношением, тщательно уплотняя смесь при укладке.

Значительно повышают морозостойкость бетона

— поверхностно-активные добавки (сульфитно-спиртовая барда, мылонафт).

—Пластифицирующие добавки (сульфитно-спиртовая барда)

—Гидрофобизующие добавки (мылонафт)

33.Мелкий и крупный заполнитель для обычного бетона. Их свойства.

В зависимости от наибольшей крупности применяемых заполнителей различают бетоны

мелкозернистыес заполнителем размером до 10 мм

крупнозернистые с заполнителем наибольшей крупности 10—150 мм.

Крупный заполнитель

Крупными заполнителями в бетоне служат гравий, щебень, а также щебень из гравия.

— Крупность

Наименьшая крупность обычно равна 5 мм.

Наибольшая крупность заполнителя должна соответствовать размерам бетонируемой конструкции и расстоянию между стержнями арматуры.

Содержание вредных примесей, а также глинистых, илистых и пылевидных частиц в крупных заполнителях ограничивают так же, как и в песке

—Прочность заполнителей влияет на прочность бетона. Требования по прочности устанавливают только для крупного заполнителя, поскольку обычно применяемые в качестве мелкого заполнителя кварцевые пески заведомо прочнее бетона.

— Морозостойкость щебня и гравия должна обеспечивать получение проектной марки бетона по морозостойкости.

Мелкий заполнитель

Песок — мелкий заполнитель, в бетонной смеси наиболее тесно связан с цементным тестом, составляя с последним растворную часть. Чем больше песка вводится в смесь, тем большей (при прочих равных условиях) оказывается вязкость растворной части (вязкость необходима для поддержания крупного заполнителя во взвешенном состоянии во избежание расслаивания бетонной смеси), тем меньшим будет расход цемента. Однако чрезмерное содержание песка приводит к снижению прочности бетона. Поэтому содержание песка должно быть оптимальным.

Пески подразделяются на природные (которые могут быть также обогащенными и фракционированными) и дробленые (которые могут быть обогащенными, фракционированными, а также из отсевов, получаемых при дроблении каменных пород на щебень).

—Зерновой состав.

Зерновой, или гранулометрический, состав песка характеризуется содержанием в нем зерен различной крупности и определяется просеиванием средней пробы через сита.

Читайте так же:
Монтажная пена вместо цемента

—Содержание примесей.

В песке, как правило, имеются примеси, нежелательные в бетоне. Поэтому стандартами ограничивается их содержание.

Наличие в песке пылевидных, глинистых и илистых примесей (частиц размером менее 0,05 мм) определяется обычно отмачиванием, состоящим в отмывке песка водой по определенной стандартной методике.

— Влажность песка

по содержанию воды в песке необходимо скорректировать (уменьшить) расход рды на замес.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Виды и характеристика коррозии цементного камня. Борьба с коррозией.

Не так давно в одной из статей мы говорили о таком понятии как тампонажный камень, где определили его основные свойства и характеристики. Также в этой статье мы упомянули об одном из наиболее значимых процессов, который влияет на состояние тампонажного камня в скважине и его способность выполнять свои функции – коррозии.

Коррозия цементного камня — это процесс разрушения материала, образуемого после затвердения тампонажного раствора в скважине. Данное разрушение обусловлено воздействием на тело камня внешних факторов. По типу вызывающих коррозию цементного камня факторов можно выделить два основных ее вида: речь идет о физических и химических коррозиях тампонажного материала. Также существуют такие менее распространенные ее разновидности – биологическая и электрохимическая.

Физическая коррозия цементного камня предполагает в качестве причины своего возникновения наличие какого-либо фактора физического характера. Это могут быть температурные колебания или значительное термическое воздействие, негативное влияние содержащейся в окружающей среде влаги, а также разрушение камня вследствие кристаллизации солей. Все эти эффекты способны нанести значительный урон, особенно – в зонах распространения многолетнемерзных пород, где данный вид коррозийного процесса может привести к смятию обсадной колонны после остановки скважины. Входящая в эту категорию термокоррозия в значительной степени характерна для объектов в виде высокотемпературных скважин, что необходимо учитывать при проведении работ по цементированию.

Химическая коррозия тампонажного камня предполагает его разрушение вследствие воздействия агрессивных химических сред. В окружающей материал воде часто содержится значительное количество растворенных солей, которые создают сложную многокомпонентную среду, а потому при разработке мер защиты ориентируются на преобладающий тип.

Среди менее изученных типов коррозии тампонажного камня необходимо выделить биологическую – то есть процесс разрушения, детерминированный наличием микроорганизмов и бактерий. Их продукты жизнедеятельности также оказывают негативный эффект на состояние цементного камня, постепенно приводя к снижению его способности выполнять свои функции.

Еще один интересный вид коррозии тампонажного камня – электрохимическая. Так называемые блуждающие токи, которые могут использовать в качестве проводника обсадную колонну и само тело камня, способны переносить отдельные ионы, что также обуславливает коррозийный процесс особого типа.

Коррозия цемента, виды коррозии и борьба цементной коррозией.

Уже давно было замечено, что сооружения, возведенные на цементе, в некоторых водах (минерализованных, мягких и кислых), постепенно разрушались, корродировались. Поэтому пришлось принять ряд мер для повышения долговечности гидротехнических сооружении. Так, начатый строительством в 1868 г. Одесский порт уже возводился инж. Августиновичем на смеси цемента с гидравлической добавкой, а не на чистом цементе, что существенно повысило прочность сооружения.

В дальнейшем широко развернулись работы по изучению коррозии цементов и методов борьбы с ней, были созданы эффективные мероприятия па борьбе с различными видами коррозии.

В. М. Москвин выделяет три основных вида коррозии бетона.

Коррозия первого вида характеризуется растворением составных частей цементного камня и в первую очередь гидрата окиси кальция.

Для коррозии второго вида типичны процессы взаимодействия между цементным камнем и агрессивным раствором с образованием либо легкорастворимых солеи, уносимых движущимся раствором, либо аморфных продуктов, не обладающих вяжущими свойствами.

Коррозия третьего вида характеризуется тем, что продукты химических реакций агрессивного раствора и цементного камня накапливаются в порах, каналах и трещинах бетона и кристаллизуются в них, разрушая структурные элементы цементного камня и бетона.

В. В. Кинд классифицирует виды агрессивности природных вод (среды по отношению к бетону) в зависимости от их состава следующим образом:

1) выщелачивающая агрессивность, присущая мягким водам и определяемая величиной гидрокарбонатной жесткости;

2) общекислотная агрессивность, присущая водам, содержащим те или иные кислоты, и определяемая концентрацией свободных водородных ионов (практически величиной водородного показателя рН);

Читайте так же:
Как правильно класть цементную стяжку

3) углекислая агрессивность, присущая водам, содержащим агрессивную углекислоту и определяемая концентрацией агрессивной или свободной CO2 (с учетом гидрокарбонатной жесткости воды);

4) сульфатная агрессивность, присущая водам, содержащим сернокислые: соли, и определяемая концентрацией ионов SO4” (с учетом содержания ионов CI’);

5) магнезиальная агрессивность, присущая волам, содержащим соли: магния, и определяемая концентрацией ионов Mg·· (с учетом содержания ионов SO4”).

Наряду с химическими процессами на развитие коррозии бетона влияют и физические факторы, такие как плотность и водопроницаемость бетона, попеременное замораживание и оттаивание, истирающее действие потока воды, несущего частицы горных пород, и т. д.

См. далее:

Коррозия цемента в пресных водах.

Коррозия цемента в минерализованных водах.

Коррозия цемента углекислыми водами.

Выполнила: Костомарова И.А.

III курс, ВиВ (заочный)

г. Москва, 2009 г.

В настоящее время цемент является одним из важнейших строительных материалов. Его применяют для изготовления бетонов, бетонных и железобетонных изделий, строительных растворов, асбестоцементных изделий. Изготовляют его на крупных механизированных и автоматизированных заводах. Цемент

начали производить в прошлом столетии. В начале 20-х годов XIX в. Е. Делиев получил обжиговое вяжущее из смеси извести с глиной и опубликовал результаты своей работы в книге, изданной в Москве в 1825 г. В 1856 г. был пущен первый в России завод портландцемента. Портландцемент является минеральным вяжущим веществом, составляющим основу большей части номенклатуры сухих строительных смесей в качестве самостоятельного вяжущего, в смешанных цементных вяжущих системах, в составе цементно-известковых вяжущих, а также различных полимерцементных композиций. Ценные и уникальные свойства портландцемента определяются его способностью при затворении водой образовывать пластичное тесто, со временем, самопроизвольно, за счёт химического взаимодействия в системе, превращающееся в камень. Способность к самоотвердеванию, образование прочного и долговечного камня, экологическая чистота, низкая химическая опасность, пожаровзрывобезопасность в сочетании с низкой стоимостью являются предпосылками для широкого практического применения портландцемента.

Бетоны и цементный камень, как его матричная часть, в эксплуатационных условиях подвержены коррозионному воздействию различных сред, особенно минерализованной воды в морских сооружениях (молы, причалы, эстакады со свайным основанием и железобетонным верхним строением, портовые конструкции и др.), минеральной кислоты при эксплуатации резервуаров, башен и других сооружений химической промышленности. На бетон оказывают коррозионное воздействие органические кислоты и биосфера, особенно при работе сооружений в торфяных грунтах, на предприятиях пищевой промышленности. Негативное влияние могут оказывать на состав и структуру цементного камня в бетонах щелочная среда, пресная вода, особенно водные растворы электролитов. В индустриальных районах коррозионное влияние на бетонные конструкции оказывают газы, например сернистые, сероводород, хлористый водород, аэрозоли солей, например морской воды и др. Агрессивное воздействие оказывают также твердые, в основном высокодисперсные вещества, способные образовывать во влажных условиях прослойки из истинных и коллоидных растворов. Кроме химических реакций при контакте со средой возможны физические сорбционные процессы с поглощением из среды поверхностно-активных веществ (ПАВ), например серосодержащих полярных смол из нефтепродуктов, с физическим нарушением сплошности контактов в структуре и ускорением развития дефектов.

Возможно вы искали — Контрольная работа: Подъёмно-транспортные машины

Коррозия цементного камня. Виды коррозии

Различают физическую, химическую, электрохимическую и биологическую коррозии.

Физическая коррозия

Это выветривание, растворение, разрушение вследствие температурных колебаний характерных для всех видов горных пород.

Коррозии растворения носит физико-химический характер (см. ниже коррозии выщелачивания).

Похожий материал — Курсовая работа: Проектирование металлорежущих инструментов

Химическая коррозия

Агрессивными по отношению к цементному камню являются все кислоты и многие соли.

Этот вид коррозии имеет место чаще всего, а разрушение происходит наиболее интенсивно. Самым уязвимым веществом в цементном камне является известь. Однако связывание извести (скажем за счет SiO2 ) еще не исключает коррозии, поскольку она может восстанавливаться за счет отступления от гидратов кальция.

Кислоты и некоторые соли вступают в реакцию с Са(ОН)2 и образуют новые соединения, либо легко растворимые в воде, либо непрочные рыхлые, либо кристаллизующиеся со значительным

Изменением объема. Иногда это все происходит одновременно.

Очень интересно — Курсовая работа: Электронный луч в технологии

Все кислоты разрушают портландцементный камень

Са(ОН)2 + НСl = CaCl + 2 H2 O

Са(ОН)2 + H2 SO4 = CaSO4 + 2H2 O

Хлористый кальций легко растворим, а CaSO4 может вступать во вза-имодействие с гидроаллюминатами кальция и образовывать гидросульфоаллюминат кальция. Последний кристаллизуется с увеличением объема.

Гипс также кристаллизуется с увеличением объема.

Вам будет интересно — Контрольная работа: Ременные передачи

Хотя в пластовых водах нет непосредственно соляной и серной кислот, (но их образование можно предположить), зато имеется достаточное количество солей агрессивных по отношению к цементному камню. К таким солям относятся сульфаты (MgSO4 , CaSO4 ), хлориды (MgCl2 , CaCl2 ).

Читайте так же:
Методы испытания цементных растворов

Агрессивный сероводород и углекислый газ, которые могут содержаться как в пластовых водах, так и в добываемых нефти и газе.

Рассмотрим основные виды химической коррозии и применение в связи с ними цементов.

Коррозия выщелачивания

Кристаллогидраты (гидросиликаты, алюминаты и ферриты кальция), образующиеся при взаимодействии с водой клинкерных минералов и составляющие вместе с наполнителями цементный камень, имеют значительную равновесную растворимость в воде. Это значит, что они остаются устойчивыми при контакте с водами, только в том случае, если в воде имеется достаточная концентрация Са(ОН)2 . Если концентрация в воде Са(ОН)2 ниже равновесной, то у гидрата будут отщепляться молекулы извести и концентрация будет восстанавливаться до равновесной.

Похожий материал — Курсовая работа: Усовершенствование технологии получения изделий из полиамида методом литья под давлением

Гидросиликаты и гидроалюминаты кальция имеют тем большую равновесную растворимость, чем выше их основность. Следовательно отщепление гидратов сначала происходит от высокоосновных гидратов, их основность при этом понижается, а устойчивость в данной среде повышается.

Если концентрация гидрата окиси кальция в дальнейшем не будет понижаться, то процесс на этом остановится. Если же концентрация извести будет продолжать понижаться и станет ниже равновесной для вновь образовавшегося гидрата, то отщепление гидрата окиси кальция будет продолжаться вплоть до полного разложения гидросиликатов и гидроалюминатов, с образованием аморфных кремнезема и глинозема. Хотя последние и плохо растворимы в воде, однако они не обладают вяжущими свойствами – прочность и монолитность камня нарушаются.

Эти процессы могут наблюдаться, если цементный камень омывается непрерывно обновляющейся водой или растворами солей, имеющими малую концентрацию Са(ОН)2 , либо если Са(ОН)2 связываются содержащимися в растворе веществами в прочные малорастворимые или малодиссоциирующие химические соединения (кальция).

Чем выше концентрация извести в порах цементного камня, тем выше скорость выщелачивания. Низкоосновные гидраты кальция имеют меньшую равновесную растворимость. Известь связывается, а основность понижается в тех случаях, когда в цемент вводятся активные кремнеземистые добавки, а при высоких температурах и кварцевый песок.

КОРРОЗИЯ ПОРТЛАНДЦЕМЕНТА

Под влиянием различных агрессивных веществ, конструкция, содержащая портландцемент может разрушаться. По классификации Москвина, все виды коррозионных разрушений цемента можно разделить на три группы.

1.Вымывание Са(ОН)2, разрушение гидросиликатов и как следствие разрушения цементного камня под действием воды (коррозия 1-ого вида)

2.Разрушение цементного камня из-за реакций обмена между Са(ОН)2 цементного камня и агрессивными веществами с образованием лёгко растворимых солей.(коррозия 2-ого вида)

3.Разрушение цементного камня из-за кристаллизации в его порах продуктов большого объёма, чем исходные вещества (коррозия 3-его вида)

1. Коррозия 1-ого вида.

Она связана с вымыванием Са(ОН)2-цементного камня, под действием мягких вод (дождевые, конденсат, воды оборотного теплоснабжения, болотные). Вымывание Са(ОН)2 ведёт к резкому понижению прочности и послойному растворению цементного камня. Внешне этот вид коррозии проявляется в виде белых потёков на поверхности конструкции.

Меры борьбы с коррозией 1-ого вида.

1.Ограничение содержания С3S<50%

2.Введение в цемент активных минеральных добавок (АМД) связывающих Са(ОН)2 в нерастворимые соединения.

3.Создание на поверхности конструкций плёнок из нерастворимых продуктов, например при карбонизации.

2. Коррозия 2-ого вида.

а) кислотная коррозия.

Кислоты попадают в конструкции либо с грунтовыми водами, насыщенными стоками химических предприятий, либо с кислотными дождями из атмосферы зачастую насыщенными такими газами, как SO2-сернистый газ, НCl-хлористый водород, Сl2-газообразный хлор.

Са(ОН)2 + 2НСl = CaCl2 + 2H2O – образуется быстрорастворимое вещество CaCl2.

Сложнее воздействует на цементный камень угольная кислота.

Коррозионный процесс протекает в два этапа:

На этом этапе образуется нерастворимый СаСО3, который закупоривает поры, и процесс коррозии замедляется, т.е. затухает. Но при больших концентрациях Н2СО3, процесс возобновляется с образованием лёгко растворимого бикорбаната кальция.

б) магнезиальная коррозия.

Она может наблюдаться при воздействии грунтовых вод насыщенных магнезиальными солями и, особенно в морской воде. Разрушение цементного камня вследствие реакции обмена протекает по следующим формулам:

В результате этих химических реакций образуется растворимая соль (хлористый кальций и двуводный сульфат кальция), причём в первой реакции гидрат окиси кальция цементного камня вступает в химическую реакцию с хлористым магнием с образованием хлористого кальция и выпадением в осадок гидрата окиси магния — рыхлой смеси, которая легко смывается водой.

Меры борьбы с коррозией 2-ого вида.

Читайте так же:
Добыча сырья при производстве цемента

1.Ограничение содержания С3S не более 50%

2.Введение активных минеральных добавок, связывающих Са(ОН)2 в нерастворимые соединения.

3.Устройство барьерной защиты, препятствующей прониканию агрессивных веществ, например, из рулонных материалов (полимерных, битумов). Для защиты от действия кислот устраивают футировки (толстые защитные слои из кислотостойкого кирпича или плиток на кислостойком растворе, либо пропитывают конструкции кислотостойкими материалами).

Коррозия 3-его вида.

Это сульфоалюминатная коррозия. Она имеет место при взаимодействии на конструкции грунтовых или морских вод с содержанием сульфат ионов (SO4 2- ) более 250мг/л. С сульфатами в цементом камне реагирует 3-х кальциевый гидроалюминат

= 3CaO × Al2O3 × 3CaSO4 × 31H2O – это соединение называется гидросульфоалюминат кальция или эттрингит.

Кристаллизуясь в порах это соединение имеет объём в 2 раза больше, чем исходные продукты и, оказывая давление на стенки пор разрушает цементный камень изнутри.

Коррозия цементного камня виды коррозии

Изделия из цемента и бетона, как из всякого другого материала, со временем в условиях своей службы подвергаются разрушению (коррозии). Проблема стойкости (неразрушаемо-сти) бетонных сооружений важна в такой же степени, как и само их создание.

Под коррозией понимается разрушение цементного или бетонного изделия в результате действия на него физических либо химических факторов как извне (внешние причины коррозии), так и изнутри (внутренние причины коррозии).

В условиях эксплуатации на цементный камень действуют: природные воды (речные и морские) под давлением или просто омывающие сооружения; промышленные и бытовые воды (стоки); периодически и многократно повторяющиеся теплосмены (сезонные и дневные колебания температур); процессы увлажнения и высыхания (колебания атмосферной влажности, специфические условия службы). Кроме того, влияют механические воздействия — удары волн, выветривание, истирание, а также биологические—вредные воздействия бактерий. Все это внешние причины коррозии и разрушения цементного камня.

К разрушению цементного камня (бетона) приводят и внутренние факторы —его высокая водопроницаемость, взаимодействие щелочей цемента с кремнеземом заполнителя, изменение объема из-за различия температурного расширения цемента и заполнителя.

Среди внешних факторов, обусловливающих коррозию цементного камня, можно выделить физические и химические факторы. Физические факторы коррозии охватывают температурные (попеременное замерзание и оттаивание, нагрев и охлаждение) и влажностные колебания среды, ведущие к появлению деформаций материала и его разрушению. К внешним факторам следует отнести и разрушение изделия за счет подсоса и кристаллизации солей в порах и капиллярах бетонного тела — так называемая солевая коррозия.

Химические факторы коррозии включают воздействие водной и газовой сред на цементный камень (бетон) — водных растворов кислот, солей, оснований, а также действие разнообразных органических веществ.

Физическая коррозия. Попеременному замораживанию и оттаиванию (влияние пониженных температур) подвергаются практически все открытые сооружения, служащие в условиях атмосферного воздействия. Особенно опасная ситуация возникает при одновременном воздействии низкой температуры и растворов солей, например при работе бетона в морских сооружениях. Суть действия пониженной температуры на бетон заключается в возникновении деформаций расширения замерзающей воды в опасных порах, которая может привести к разрушению камня. Возникают по меньшей мере два источника разрушающих сил: первый — увеличение объема воды при замерзании (-9%), что ведет к возникновению большого гидравлического давления на стенки пор и капилляров, второй — осмотическое давление, возникающее благодаря локальному увеличению концентрации раствора.

Цо мнению некоторых исследователей, величина осмотического давления может достигать 1—2 МПа. Сильное внутреннее напряжение усиливается при повторных циклах замерзания и оттаивания. Сначала образуются мельчайшие трещины, затем они заполняются водой, которая при замерзании вызывает дальнейшее растрескивание цементного камня (бетона). Многократные теплосмены постепенно расшатывают структуру цементного камня и бетона, снижают его прочность и в момент, когда давление расширения превышает предел прочности при растяжении, бетон разрушается.

Как показано Б. Г. Скрамтаевым, В. М. Москвиным, В. В. Стольниковым и С. Д. Мироновым, основную роль в разрушении цементного камня при действии низких температур играют общая пористость и характер капиллярно-пористой структуры материала: в искусственном камне имеются поры, наиболее опасные и ответственные за развитие разрушения материала. Практически не опасны очень мелкие поры геля. Поскольку морозостойкость искусственного камня зависит от характера и величины общей пористости, то, снижая пористость, можно добиться существенного повышения морозостойкости. Общую пористость можно уменьшить снижением В/Ц, использованием цемента с пониженной водопотребностыо, а также введением добавок разного типа — пластифицирующих, гидрофоби-зирующих, воздухововлекающих.

Морозостойкость цементного камня (бетона) зависит от качества цементного раствора и заполнителей. Качество заполнителей может колебаться в широких пределах, так как не существует прямой зависимости между долговечностью заполнителя и бетона. Однако, существует общее мнение, что заполнители с большой внутренней поверхностью, легко доступной для воды, являются менее морозостойкими. По условиям работы бетонные и цементные конструкции могут находиться в сфере воздействия повышенных температур, влияние которых изучали К. Д. Некрасов, В. М. Москвин и др. Вредное воздействие температуры на затвердевшие бетоны начинается при 50—100 °С, усиливается при 500 °С (и выше) и состоит в разложении сначала гидратиых образований, а затем и других составляющих цементного камня. Поэтому не рекомендуется применять бетоны на обычных цементах, работающие при температурах свыше 250 °С.

Читайте так же:
Как приготовить цемент для кафеля

Для того чтобы повысить жаростойкость затвердевших бетонов, следует вводить добавки (шамот, туф, трепел и т. д.) в количестве 0,5—2 мае. ч. на 1 мае. ч. цемента, которые при температурах выше 800 °С взаимодействуют с составляющими цемента СаО из Са(ОН)2 и СаСОз, образуя термически- и водоустойчивые соединения.

Попеременное увлажнение и высыхание цементного камня и бетона вследствие, например, климатических особенностей атмосферы или специфических условий работы конструкции вызывает соответственно деформации — набухание или усадку. Вопросы, связанные с набуханием и усадкой собственно цемента, рассматриваются при изучении строительно-технических свойств цемента. Что касается бетонного тела, то при нарушении влажностных равновесий системы бетон —среда, например при неравномерной диффузии влаги в объем бетона, в его толще возникают градиенты влажности, приводящие к деформациям набухания при насыщении водой или усадки —при высушивании, снижающим прочность бетона. Деформации усадки и набухания можно характеризовать, по С. В. Александровскому, коэффициентами линейной усадки и линейного набухания h (мм/мм), которые представляют собой относительные деформации бетона (мм/мм), происходящие при изменении его массовой относительной влажности (г/г) при равномерном высыхании или увлажнении. Порядок коэффициентов в среднем таков: /3=0,03 мм/мм, h = 0,005 мм/мм. Величину деформации набухания и усадки можно заметно нейтрализовать, меняя количество и качество заполнителя, вид и расход цемента, водо-цементное отношение.

Кристаллизация солей также относится к физическим видам коррозии. Капиллярные подсосы воды в той части бетонной конструкции, которая работает в грунте, приводят к возникновению такого типа коррозии, если в грунтовых водах большая концентрация водорастворимых солей (Na2S04, ИазСОз, MgS04), высокий уровень минерализованных вод, при этом климат данного района сухой или жаркий. Солевые растворы в этом случае регулярно поступают в поры бетона, одновременно происходит испарение воды. Выделяющиеся из раствора соединения при кристаллизации оказывают давление на стенки пор и капилляров, что может вызвать деформацию бетона, а иногда и его разрушение. Особенно сильным оказывается давление кристаллизации, когда образующиеся соли вначале безводны, а затем переходят в кристаллогидраты. Такой вид коррозии можно ‘предотвратить, используя бетоны с малой открытой пористостью или защищая их гидроизоляцией.

Химическая коррозия. Действие (агрессия) воды и водных растворов (неорганических и органических веществ — кислот, солей, оснований), а также кислых газов в условиях службы бетонных и железобетонных конструкций приводит к разрушению бетонного и цементного камня. Причины разрушения (коррозии) заключаются в химическом взаимодействии агрессивной среды и составляющих бетона. Проблемы стойкости бетонных и железобетонных конструкций в условиях химической агрессии изучали В. А. Кинд, В. В. Кинд, В. Н. Юнг, Ф. Ли, В. М. Москвин, А. Ф. Полак, В. И. Бабушкин. Процессы, происходящие при взаимодействии водной среды и бетона, по их сути можно систематизировать, что и было сделано В. М. Москвиным и В. В. Киндом.

В. М. Москвин разделяет коррозию бетона на три вида. К первому виду коррозии он относит процессы, происходящие в бетоне под воздействием вод с малой временной жесткостью (мягких вод), в результате действия которых составные части цементного камня растворяются и уносятся сквозь толщу бетона при фильтрации, ко второму виду коррозии отнесены реакции обмена между составляющими воды и бетона с образованием растворимых или не обладающих вяжущими свойствами продуктов, ослабляющих структуру камня; к третьему виду—-накопление и кристаллизация в трещинах, порах и капиллярах бетона солей, которые также способны разрушить материал (солевая коррозия).

При изучении химических факторов коррозии бетона следует рассматривать не только химический и минералогический составы бетона, его капиллярно-пористую структуру, но и основу агрессивной среды, в которой, как это следует из опыта работы бетонных сооружений, большую роль играют ионы магния, натрия, алюминия, аммония, меди, железа, водорода, гидроксила, сульфатные, карбонатные, бикарбонатные, хлористые анионы. Опасны также все виды кислых газов —углекислый, сернистый, сероводород.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector