Chel-remont174.ru

Ремонт 174
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Адгезия поверхностей

Адгезия поверхностей

Адгезия поверхностей

Адгезия

Адгезия — это связь между приведенными в контакт разнородными поверхностями. Причины возникновения адгезионной связи — действие межмолекулярных сил или сил химического взаимодействия. Адгезия обусловливает склеивание твердых тел — субстратов — с помощью клеющего вещества — адгезива, а также связь защитного или декоративного лакокрасочного покрытия с основой. Адгезия играет также важную роль в процессе сухого трения. В случае одинаковой природы соприкасающихся поверхностей следует говорить об аутогезии (автогезии), которая лежит в основе многих процессов переработки полимерных материалов. При длительном соприкосновении одинаковых поверхностей и установлении в зоне контакта структуры, характерной для любой точки в объеме тела, прочность аутогезионного соединения приближается к когезионной прочности материала (см. когезия).

На межфазной поверхности двух жидкостей или жидкости и твердого тела адгезия может достигать предельно высокого значения, так как контакт между поверхностями в этом случае полный. Адгезия двух твердых тел из-за неровностей поверхностей и соприкосновения лишь в отдельных точках, как правило, мала. Однако высокая адгезия может быть достигнута и в этом случае, если поверхностные слои контактирующих тел находятся в пластическом или высокоэластичном состоянии и прижаты друг к другу с достаточной силой.

Адгезия жидкости

Адгезия твердых тел

Адгезия жидкости к жидкости или жидкости к твердому телу. С точки зрения термодинамики причина адгезии — уменьшение свободной энергии на единице поверхности адгезионного шва в изотермически обратимом процессе. Работа обратимого адгезионного отрыва Wa определяется из уравнения: >Wa = σ1 + σ2 — σ12

где σ1 и σ2 — поверхностное натяжение на границе фаз соответственно 1 и 2 с окружающей средой (воздухом), а σ12 — поверхностное натяжение на границе фаз 1 и 2, между которыми имеет место адгезия.

Значение адгезии двух несмешивающихся жидкостей можно найти из уравнения, указанного выше, по легко определяемым значениям σ1, σ2 и σ12. Наоборот, адгезия жидкости к поверхности твердого тела, вследствие невозможности непосредственного определения σ1 твердого тела, может быть рассчитана только косвенным путем по формуле:>Wa = σ2 (1 + cos ϴ)

где σ2 и ϴ — измеряемые величины соответственно поверхностного натяжения жидкости и равновесного краевого угла смачивания, образуемого жидкостью с поверхностью твердого тела. Из-за гистерезиса смачивания, не позволяющего точно определить краевой угол, по этому уравнению обычно получают только весьма приближенные значения. Кроме того, этим уравнением нельзя пользоваться в случае полного смачивания, когда cos ϴ = 1.

Оба уравнения, приложимые в случае, когда хотя бы одна фаза жидкая, совершенно неприменимы для оценки прочности адгезионной связи между двумя твердыми телами, так как в последнем случае разрушение адгезионного соединения сопровождается различного рода необратимыми явлениями, обусловленными различными причинами: неупругими деформациями адгезива и субстрата, образованием в зоне адгезионного шва двойного электрического слоя, разрывом макромолекул, «вытаскиванием» продиффундировавших концов макромолекул одного полимера из слоя другого и др.

Адгезия полимеров

Адгезия полимеров

Почти все применяемые в практике адгезивы представляют собою полимерные системы или образуют полимер в результате химических превращений, происходящих после нанесения адгезива на склеиваемые поверхности. К неполимерным адгезивам можно отнести только неорганические вещества типа цементов и припоев.

Методы определения адгезии

  1. Метод одновременного отрыва одной части адгезионного соединения от другой по всей площади контакта;
  2. Метод постепенного расслаивания адгезионного соединения.
Метод отрыва — адгезия

При первом способе разрушающая нагрузка может быть приложена в направлении, перпендикулярном плоскости контакта поверхностей (испытание на отрыв) или параллельном ей (испытание на сдвиг). Отношение силы, преодолеваемой при одновременном отрыве по всей площади контакта, к площади называется адгезионным давлением, давлением прилипания или прочностью адгезионной связи (н/м2, дин/см2, кгс/см2). Метод отрыва дает наиболее прямую и точную характеристику прочности адгезионного соединения, однако применение его связано с некоторыми экспериментальными затруднениями, в частности с необходимостью строго центрированного приложения нагрузки к испытуемому образцу и обеспечения равномерного распределения напряжений по адгезионному шву.

Отношение сил, преодолеваемых при постепенном расслаивании образца, к ширине образца называется сопротивлением отслаиванию или сопротивлением расслаиванию (н/м, дин/см, гс/см); часто адгезию, определяемую при расслаивании, характеризуют работой, которую необходимо затратить на отделение адгезива от субстрата (дж/м2, эрг/см2) (1 дж/м2 = 1 н/м, 1 эрг/см2 = 1 дин/см).

Метод расслаивания — адгезия

Определение адгезии расслаиванием более целесообразно в случае измерения прочности связи между тонкой гибкой пленкой и твердым субстратом, когда в условиях эксплуатации отслаивание пленки идет, как правило, от краев путем медленного углубления трещины. При адгезии двух жестких твердых тел более показателен метод отрыва, т. к. в этом случае при приложении достаточной силы может произойти практически одновременный отрыв по всей площади контакта.

Адгезия

Методы испытаний адгезии

Адгезию и аутогезию при испытании на отрыв, сдвиг и расслаивание можно определять на обычных динамометрах или на специальных адгезиометрах. Для обеспечения полноты контакта адгезива и субстрата адгезив применяют в виде расплава, раствора в летучем растворителе или мономера, который при образовании адгезионного соединения полимеризуется.

Однако при отверждении, высыхании и полимеризации адгезив, как правило, претерпевает усадку, в результате чего на межфазной поверхности возникают тангенциальные напряжения, ослабляющие адгезионное соединение.

Напряжения эти могут быть в значительной мере устранены введением в клей наполнителей, пластификаторов, а в некоторых случаях термообработкой адгезионного соединения.

На определяемую при испытании прочность адгезионной связи существенным образом могут влиять размеры и конструкция испытуемого образца (в результате действия т. н. краевого эффекта), толщина слоя адгезива, предыстория адгезионного соединения и другие факторы. О значениях прочности адгезии или аутогезии, можно говорить, конечно, лишь в случае, когда разрушение происходит по межфазной границе (адгезия) или в плоскости первоначального контакта (аутогезия). При разрушении образца по адгезиву получаемые значения характеризуют когезионную прочность полимера.

Читайте так же:
Миксер для размешивания цемента

Некоторые ученые считают, однако, что возможно только когезионное разрушение адгезионного соединения. Наблюдающийся адгезионный характер разрушения, по их мнению, лишь кажущийся, поскольку визуальное наблюдение или даже наблюдение с помощью оптического микроскопа не позволяет обнаружить на поверхности субстрата остающийся тончайший слой адгезива. Однако в последнее время и теоретически и экспериментально было показа но, что разрушение адгезионного соединения может носить самый разнообразный характер — адгезионный, когезионный, смешанный и микромозаичный.

Статьи по теме

Когезия

Когезия

КОГЕЗИЯ (от лат. соhaesus — связанный, сцепленный * а. соhesion; н. Kohasion; ф. соhesion; и. соhesion) — сцепление частиц вещества (молекул, ионов, атомов), составляющих одну фазу. Когезия обусловлена силами межмолекулярного (межатомного) притяжения различной природы

Адгезиметр

Адгезиметр

При проведении некоторых видов работ необходимо определять уровень взаимодействия определенных элементов. Важно изначально знать насколько сильно они сцепляются друг с другом, чтобы конструкции была как можно более надежной.

Адгезия цемента что это

В сентябре 1986 г. в Провансе (Франции) состоялся организованный РИЛ ЕМ международный симпозиум, посвященный полимеров с бетоном.

На симпозиуме было рассмотрено десять тематических направлений; научное объяснение адгезии; свойства бетонной поверхности; свойства склеивающего материала; покрытия и покраска; ремонт бетонной поверхности; сцепление нового бетона со старым; инъекция трещин; склеивание сборных элементов; приклеивание стали к бетону; измерение адгезии.

К 69 докладах приведен большой теоретический, экспериментальный и практический материал. Рассмотрены методики испытаний, составы клеющих композиций, результаты исследований, даны схемы, фотографии, таблицы и графики. Проблема адгезии исследуется во многих странах. Разделение тематики по указанным направлениям условно, так как доклады часто охватывают многие вопросы и перемежаются между собой.

Адгезия полимеров к бетону рассматривается с различных позиций. Толщина и свойства переходной зоны между адгезивом и поверхностью бетона определяются с учетом четкого анализа влияния влажности, температуры, радиации и пр. (Бельгия). Наличие напряжений из-за физических и химических явлений выявляется, главным образом, осмотическим капиллярным давлением. Такие локальные дефекты в полимерном слое или з зоне контакта могут привести к местным напряжениям и повреждениям (ФРГ Механизм разрушения анализируется гъ примере упругих и вязкоупругих тел с полимерным клеем (Франция). Для исследования напряжений в контактном слое применяют методы фотоупругости (Польша). Для увеличения адгезионной способности между цементной матрицей и заполнителем в бетоне используют эфе: целлюлозы (Япония).

Полимерные защитные покрытия наносят на многие железобетонные сооружения как вновь строющиеся, так и на старые. В некоторые покрытия вводят пигмент. Более 80% покрытий имеют в основе эпоксидные и полиуретановые полимеры. Особенно широко покрытия применяют при строительстве мостов, тоннелей и плотин, так как они надежно защищают конструкции от атмосферных воздействий, абразивных веществ и воды (Франция). Эта проблема рассматривается также применительно к шоссейным дорогам длиной 40 тыс. км и 23000 мостов, при этом обращается внимание на наличие влаги в контактной зоне покрытия с бетоном (ФРГ). Для предотвращения об разования и развития трещин в бетон вводится стекловолокно (Польша). Отмечается, что покрытия на эпоксидных и акриловых смолах задерживают процессы карбонизации бетона и коррозии арматуры (Япония). Высокие антикоррозийные свойства покрытий имеют составы на модифицированных полимерах (СССР), а также на полиэфире (Китай).

Ремонт бетона цементно-акриловыми составами разработан при помощи торкретирования (Италия). Новый тип материала на основе винилового эфира предлагается для ремонтных работ (Китай). Даются характеристики полимерцементных составов для ремонта бетона, которые наносят слоями до 50 мм толщиной (Япония). Специфичен ремонт железобетона (Швейцария) и непосредственно защита при этом арматуры. Приведен многолетний опыт ремонта бетона взлетнопосадочных полос парижских аэродромов (Франция). Исследуется поведение полимерных покрытий с бетоном под различными нагрузками (ЧССР).

Сцепление нового бетона со старым рассматривается применительно к укладке монолитного бетона с перерывом во времени (Югославия), ремонту сборных конструкций (СРР). Исследуются прочность сцепления при статических и циклических нагрузках (Бельгия), а также различные параметры, влияющие на сцепление (Канада). Оцениваются варианты конфигурации верхнего слоя форм для укладки в них бетона и изготовления преднапряженных балок; формы изготовляют из бетонополимера на основе нолиметилметакрилата (Япония).

Инъекция трещин проводится для ответственных сооружений, таких как ограждение ядерного реактора, для увеличения воздухонепроницаемости. Для этой цели применяется супержидкая эпоксидная смола и силикат натрия. Изучается также влияние воды на свойства эпоксидных смол при их смешении для инъекционных работ, температурные условия и специфика инъектирования микропор в бетоне (Франция). Исследуется качество железобетонных конструкции с инъектированными трещинами разной ширины и увеличение при этом долговечности их работы (ФРГ). Уделено внимание исследованиям таких конструкций, а также применению нового высокомолекулярного метакрилата для ремонта трещии (США).

Разработана технология склеивания сборных железобетонных балок после автоклавной обработки для устройства панелей на высоту комнаты с оконными и дверными проемами. Установлена прочность склеивания отдельных узлов сборных элементов (ФРГ). Приведены результаты исследований соединений на эпоксидной смоле преднапряженных элементов мостов. Изучено влияние окружающей климатической среды и различных нагрузок на прочность склеенных швов в бетоне (Франция).

Больше всего докладов посвящено приклеиванию стали к бетону для усиления или восстановления железобетонных конструкций. Клей для этого, как Правило, изготовляют на эпоксидных смолах. Использование для приклейки полосовой стали задерживает распространение трещин. Этот метод стал довольно распространенным в Англии. Лабораторные и практические результаты подтверждают надежную работу бетонных элементов с приклеенными стальными полосами при различных атмосферных воздействиях, кроме высоких температур. Качество приклеивания зависит от поверхности бетона и стали и квалификации персонала (Нидерланды). Усиление конструкций со значительными трещинами приклеиванием арматуры исключает их инъектирование (Польша). Различные варианты такого внешнего армирования бетонных элементов делают их аналогичными железобетонным конструкциям (Югославия). Проведены теоретические исследования деформаций ползучести в клеевом соединении сталь — бетон (Италия). Имеются экспериментальные данные поведения тавровые гелезобетонных балок с приклеенной поло, содой сталью при усталостных напряжениях. Для снижения таких напряжений приклеивание стальных полос применяют в конструкциях неразрезных пролетов мостов (ФРГ). Исследования теории механики позволяют проводить ремонт и усиление указанным способом. Поведение приклеенных стальных полос изучено в непосредственной близости от трещин. (Франция). г Измерение адгезии проведено в указанных исследованиях. В данном раздел« специально смонтированы работы,: посвященные только этому направлению например: оценка качества ремонта 6eJ тона во Франции, сопротивление заделанных в бетон анкеров (Бельгия), оцеика измерений при ремонте дорожного полотна мостов (ФРГ), испытание адгезию полнмерцементного раствора к цементной му различными методами (Япония), оценка адгезии полимерцементных растворов (Швейцария) и др. щ

Читайте так же:
Бетон м200 пропорции цемент пгс

Что такое адгезия клея и какой выбрать

Видов крепления существует множество: сварка, заклепки, соединение с помощью крепежных элементов и так далее. Однако применение клеящего состава остается одним из самых востребованных, так как позволяет соединить поверхности очень разных материалов и без механического воздействия на предметы.

Укладка клея

Одним из основополагающих факторов выбора при этом является высокая адгезия клея.

Что это такое

Склеивание – способ неразъемного соединения каких-либо элементов, за счет формирования адгезионной связки между склеиваемыми поверхностями. Состав, используемый для этого, называется клеем. Вещество может иметь природное или искусственное происхождение, но в любом случае должно обладать определенными свойствами.

Адгезия – свойство, обеспечивающее прочность соединения материалов. После застывания клеящего слоя предметы должны составлять как бы единое целое. Если соединение нельзя разъять, можно говорить о высоких адгезионных свойствах вещества.

Приготовление клеящего состава

Приготовление клеящего состава

Качество это указывает на способность клеевого состава закрепиться на поверхности. Так, металл является веществом низкопористым, что указывает на его низкие адгезионные свойства. Обычный клей, например, на поверхности металла или стекла попросту не удержится. Клей с повышенными адгезионными свойствами образует достаточно прочную связь, чтобы соединить гладкие поверхности.

Что такое когезия? Прочность, которую обеспечивает сам клей при застывании. Например, пластилин может временно закрепить собой два предмета, однако под действием веса одного из них материал легко разрушается. Клеевой состав с хорошей когезией обеспечивает прочность связи.

Величина эта относительная, так как зависит от характера и веса склеиваемых предметов. Так, этикетка, прикрепляемая к бутылке, обладает минимальным весом, и чтобы удержать, ее достаточно смеси с довольно низкими когезионными качествами. А вот клей плиточный с адгезий к бетону должен обладать повышенной когезий, поскольку плитка – изделие тяжелое.

Замешивание раствора для плитки

Замешивание раствора для плитки

Еще один важный параметр состава – способность сохранять прочность соединения при разных температурах. В быту используются смеси, обеспечивающие схватывание при нормальной температуре, то есть, около 20–30 С. Однако уже в строительных работах, при креплении камня и керамики, при фиксации металлических панелей и кирпича этого недостаточно. Выпускают разные виды изделия, предназначенные для эксплуатации при разных температурах.

Адгезия, когезия, температурный рабочий диапазон продукта регламентируется ГОСТ.

Суть склеивания

Вне зависимости от природы клеящей смеси механизм действия ее одинаков и определяется 2 главными факторами.

Клей с хорошей адгезий – плиточный, для металлических поверхностей и так далее, поступает потребителю в полуготовом виде. Его компоненты смешаны, но не вступили в окончательную реакцию. При приготовлении состава – перемешивание и смешивание сухих компонентов с водой, происходит химическая реакция, и вещество начинает полимеризоваться. При этом пастообразный продукт медленно или быстро переходит в твердое состояние.

В быту этот процесс называется схватыванием или затвердеванием. Известно, что склеивать материалы возможно, только пока смесь находит в полужидком состоянии.

Нанесение клея

Сродство материалов – понятно, что высокой адгезией друг к другу обладают вещества близкие по природе, исключением являются только металлы. И керамическое изделие – плитка, керамогранит, и бетон являются соединениями сложными, в состав их входит довольно много разнообразных компонентов. Если соединяющий их раствор обладает сходным составом, адгезионные свойства его по отношению к этим материалам будут повышенными. Так, для укладки плитки на бетонные и кирпичные основания чаще всего используют составы, включающие цемент.

Как выбрать клей повышенной адгезии для плитки

Учитывать при этом приходиться довольно приличный список факторов:

  • Условия эксплуатации – если речь идет о внешней отделке, то понятно, что керамика будет подвергаться действию низких температур, а, значит, использовать имеет смысл лишь хороший специальный состав, устойчивый на морозе. Если дело касается облицовки камина, ситуация противоположная – нужен материал, выдерживающий действие очень высоких температур.
  • Кроме того, необходимо учитывать и влажность. Для сырого помещения потребуется клей, отличающийся эластичностью. На фото – образцы хороших клеевых смесей.
  • Сродство к основанию – бетон, кирпич, цементно-песчаные связки считаются простым основанием при отделке керамикой, так как, во-первых, сами являются довольно пористыми материалами, а, во-вторых, включают множество компонентов типа цемента, минерального наполнителя и так далее. Для соединения с металлическими или стеклянными поверхностями смеси используются только специализированные, с повышенной адгезий по отношению к низкопористым материалам.

Цементный клей для плитки

Цементный клей для плитки

Адгезия клея для плитки регламентируется ГОСТ. Если речь идет о пористом варианте, то применяют обычные смеси, даже цементные. Если дело касается низкопористых материалов, требуется особое решение. В эту категорию попадает, например, керамогранит и клинкер, например, так как пористость их очень низка и обычный цементный плиточный состав не удерживает изделие на стене.

Что такое цементная гидроизоляция, основные виды: обмазочная, полимерная, способы применения

Цементная гидроизоляция обеспечивает защиту различных конструкций от воздействия влаги. Материалы этой группы используются часто за счет множества преимуществ. При правильном смешивании компонентов обеспечивается высокая надежность, увеличивается срок службы покрытия. Существуют разные виды смесей на цементной основе. При выборе учитывают их состав, свойства.

Читайте так же:
Как должна сохнуть цементная стяжка пола

как наносится и выполняется гидроизоляция на базе цемента

Особенности

Гидроизоляционные смеси используются для защиты разных поверхностей от воды: пола, стен и потолков, швов и трещин в бетоне и др. Распространение получили материалы на основе цемента. Это обусловлено приемлемой ценой, сравнительно простым применением.

Несмотря на то что цемент впитывает некоторое количество влаги, смеси, содержащие такой компонент, обеспечивают высокую защиту от воздействия воды. При этом нет противоречий свойств, т. к. при изготовлении гидроизоляции на цементной основе используются специальные добавки, многократно улучшающие характеристики материала.

Для гидроизоляции поверхностей применяют составы, содержащие напрягающий цемент. Его отличает повышенная прочность, устойчивость к образованию трещин. По сравнению с другими марками такой цемент поглощает влагу минимально. Использование гидрофобных добавок, пластификаторов способствует повышению стойкости к воздействию воды, усилению надежности за счет увеличения пластичности смеси.

Гидроизоляция наносится слоем существенной толщины, за счет чего обрабатываемая конструкция лучше защищается. Принцип нанесения схож с методом использования штукатурных смесей. Благодаря гидроизоляционному слою не образуется конденсат, который постепенно разрушает конструкцию и облицовку. В результате ограждаемые поверхности дольше сохраняют привлекательность, служат тоже долго.

гидроизоляция цементная для устранения течей

Плюсы и минусы

  • широкая область применения: защита фундамента, ограждение одноэтажных и многоэтажных построек, гидроизоляция бассейнов и резервуаров, контактирующих с водой, подготовка к облицовке ванных комнат, балконов, нанесение на конструкции, которые подвергаются воздействию существенной нагрузке воды под давлением, при подтоплении помещений;
  • высокая степень защиты от влияния влаги, гидроизоляция на цементной основе может использоваться в любых условиях, даже в наиболее сложных;
  • простой принцип применения;
  • возможность нанесения на увлажненную поверхность, что обусловлено присутствием в составе цемента, адгезия которого только повышается, если предварительно повысить влажность ограждаемой поверхности;
  • обеспечение защиты от коррозии;
  • отсутствие химической реакции при контакте с агрессивными средами;
  • устойчивость к воздействию низких температур;
  • паропроницаемость;
  • отсутствие вредных компонентов.

Недостатков у таких смесей мало. Отмечают возможность нанесения только на конструкции, которые уже набрали прочность. Кроме того, гидроизоляционные материалы на основе цемента обеспечивают высокую степень защиты при условии, что на ограждаемую конструкцию наносится несколько слоев материала.

Разновидности по составу

При выборе учитывают тип компонентов, структуру смеси. Материал подбирают с учетом целевого назначения ограждаемой конструкции, условий эксплуатации. Гидроизоляция должна соответствовать температурному режиму, при котором будет наноситься и служить в дальнейшем. Нарушение этого условия приведет к постепенному разрушению защитного слоя.

Цементно-песчаная гидроизоляция

Для нанесения рекомендуется использовать метод распыления состава посредством специального оборудования. Главное целевое назначение цементно-песчаной смеси — защита монолитного основания объектов. Если планируется наносить гидроизоляцию своими руками, для повышения плотности состава нужно вводить специальные добавки. Без них срок службы гидроизоляции сократится, а покрытие не будет выполнять свои функции.

Смесь наносится последовательно несколько раз. Когда работы будут окончены, рекомендуется защитить ограждаемую конструкцию от возможных повреждений на время высыхания.

технология нанесения цементной гидроизоляции

С добавлением латекса

Благодаря такому составу обеспечивается пластичность материала. Латекс повышает устойчивость гидроизоляции к образованию трещин. Материал намного лучше переносит воздействие перепадов температур и низких значений этого параметра. В результате цементная смесь напоминает жидкую резину по внешнему виду и свойствам. После нанесения материала получают непроницаемое покрытие, которое надежно защищает ограждаемую конструкцию от влаги.

Можно добавлять латекс в цементную смесь самостоятельно, соблюдая пропорции. Однако намного проще использовать готовую смесь.

  • применение метода торкретирования или набрызгивания на поверхность, которая предварительно была тщательно подготовлена;
  • смесь должна быть горячей.

применение гидроизоляции на основе цемента

С жидким стеклом

Такой компонент добавляется в цементную смесь, что позволяет улучшить свойства жесткого цементно-песчаного раствора. Чаще всего материал применяется для защиты фундамента, цокольных этажей, для формирования огнеупорных покрытий.

  • защита от воздействия высоких температур;
  • высокая адгезия;
  • проявление антисептических свойств;
  • отсутствие токсичных компонентов в составе.
  • жидкое стекло наносят на швы, стыки, трещины, такой вариант используется в качестве вспомогательной меры, после нанесения гидроизоляции данного вида применяют еще и рулонный материал;
  • жидкое стекло применяется в качестве основного компонента цементной смеси, предназначенной для заливки фундамента.

Цементно-полимерная

В состав входит портландцемент, песок, пластификаторы. Цементно-полимерная гидроизоляция отличается улучшенными свойствами. Главным преимуществом такого материала считается высокая устойчивость к воздействию нагрузок на растяжение и разрыв. Это обусловлено образованием молекулярных связей при сочетании полимерных компонентов и цемента. В результате ограждаемая конструкция хорошо переносит динамические нагрузки, отличается устойчивостью к образованию трещин.

обмазочная гидроизоляция на цементной основе

Различают разные виды полимерцементных смесей:

  • гидроизоляционный клей;
  • гидроизоляция.

Существуют одно- и двухкомпонентные составы. Причем сильнее распространен второй из вариантов. В его состав входит акриловая эмульсия, микрофибра. Такой материал применяют, когда отмечается высокий риск воздействия деформационных нагрузок (образуются трещины более 1 мм). В остальных случаях можно использовать сухие однокомпонентные смеси.

Виды составов по способу нанесения

Материалы отличаются по структуре и способу нанесения. Выбор делается с учетом состояния ограждаемой конструкции. Проникающие составы более предпочтительны для использования на поверхностях, которые отличаются пористостью. Цементная гидроизоляция обмазочного типа, штукатурная и эластичная обмазочная смесь наносятся на поверхность. Отдельные виды материалов предназначены только для ремонта объектов.

нанесение обмазочной гидроизоляции валиком

Обмазочная

Это наиболее распространенная смесь, ее применяют для защиты разных поверхностей при строительстве и на этапе выполнения ремонта: пола, стен, потолков, балконов, ванных комнат, фундаментов, резервуаров для воды. Обмазочная гидроизоляция позволяет создать на ограждаемой поверхности непроницаемый слой, который тщательно защищает от воды.

Эластичная обмазочная

К данной группе относятся материалы, содержащие пластификаторы. Это вспомогательные компоненты, которые используются для повышения эластичности цементного состава. Такой вид смеси рекомендуется применять для защиты поверхностей сложной конфигурации, склонных к образованию мелких паутинообразных трещин шириной до 0,5 мм.

Штукатурная

Такой вариант материала подвержен растрескиванию, поэтому не рекомендуется использовать его при повышенных динамических нагрузках. Поверхность ограждаемой конструкции не должна деформироваться, тогда обеспечивается существенная длительность службы гидроизоляции. Для улучшения свойств разрешается добавлять вспомогательные компоненты, например, жидкое стекло. Такой вид материала имеет преимущество — способность выравнивать искривленные поверхности и одновременно обеспечивать защиту от влаги.

Читайте так же:
Керамзитовый гравий пролитый цементным молочком плотность

цементая гидроизоляция как наносится

Проникающая

Гидроизоляция этого вида может быть использована только для защиты конструкций из бетона и железобетона. Это обусловлено тем, что состав обеспечивает эффективность при условии, что ограждаемая поверхность пористая. Гидроизоляция проникает в структуру бетона, при контакте с влагой, содержащейся в таком материале, кристаллизуется, закупоривая поры.

Ремонтные составы

Отличаются высокой скоростью высыхания. Такой вид материалов рекомендуется использовать для заполнения швов, трещин. Его допустимо применять на разных поверхностях, в том числе и при восстановлении фундамента. К преимуществам этой смеси относят отсутствие усадки при высыхании.

Водяная пробка

Материал применяют, когда необходимо быстро восстановить целостность бетонных напорных конструкций. Используется для ремонта объектов из камня, бетона, железобетона. Выпускается в сухом виде. При контакте с водой, когда происходит закупорка смесью деформированного участка в толще конструкции из бетона или камня, цементный состав моментально затвердевает, образуя непроницаемую преграду для воды. Преимущество водяной пробки заключается в высокой адгезии с ограждаемой поверхностью. Ее применяют даже при наличии течи.

полимерно-цементая гидроизоляция

Технология нанесения

  1. Если основание старое, его ремонтируют: снимают верхний слой, очищают, выравнивают с помощью специальных смесей.
  2. Перед применением цементных составов поверхность увлажняется.
  3. Когда избыток влаги испарится, а ограждаемая конструкция будет слабо увлажнена, наносят гидроизоляцию.
  4. В работе применяют шпатель или специальное оборудование для распыления смеси.
  5. Материал наносят несколько раз. После формирования первого слоя нужно выждать 2-3 дня, в течение этого периода поверхность увлажняется.
  6. На 3 суток, пока первый слой не высох, наносят следующий, а затем еще один. Нельзя допускать, чтобы гидроизоляция на основе цемента покрывала сухую поверхность.

Производители

Чтобы приобрести качественный сертифицированный материал, рассматривают продукцию распространенных марок. Нужно учитывать, что в Москве и регионах цены разнятся.

Ceresit CR 65

Это цементная жесткая гидроизоляция. Область применения:

  • внутренние и внешние поверхности;
  • заглубленные в почву конструкции;
  • ванна бассейна и других резервуаров;
  • защита стен, пола и потолка в помещениях с повышенной влажностью;
  • гидроизоляция гидротехнических и очистных сооружений;
  • защита разных объектов от разрушения и воздействия низких температур.

Bergauf Hydrostop

Гидроизоляция относится к группе материалов обмазочного типа. Это однокомпонентная смесь, наносится толщиной 1-5 мм. Прочность набирает через 28 суток, отличается устойчивостью к нагрузкам на изгиб и сжатие. Состав может применяться в условиях высоких и низких температур: -50…+70°С.

Цемент НЦ

Напрягающий цемент относится к отдельной группе материалов, т. к. отличается высоким показателем линейного расширения, не подвергается усадке, не деформируется. Это наиболее прочное вещество, а еще выигрывает в сравнении с портландцементом по влагостойкости. Материал почти не содержит пор, поэтому хорошо защищает от влаги.

Стеклоиономерные цементы (стеклоиономеры)

Стеклоиономерные цементыСтеклоиономерные цементы (СИЦ) целый класс современных стоматологических материалов, созданных путем объединения свойств силикатных и полиакриловых систем. Пломбирование зубов с применением стеклоиономерных цементов постепенно вытесняет из стоматологической практики цинк-фосфатные и цинк-поликарбоксилатные цементы. Классификацию стеклоиономерных цементов принято проводить по ряду признаков.

По их применению. Для постоянных пломб (эстетические, упроченные), быстротвердеющие (для прокладок, герметизации фиссур), для пломбирования корневых каналов, для фиксации ортопедических конструкций.

    По форме выпуска:

В зависимости от химического состава механизма отвердения.

  1. Классические (порошок-жидкость). Порошок мелкодисперсноеалюмофторсиликатное стекло (размеры частиц 20-50 мкм). Компоненты порошка: диоксид кремния, оксид алюминия, фторид кальция, фториды других металлов (обеспечивающие фторвыделение для профилактики кариеса), фосфат алюминия (обеспечивает прочность и устойчивость к истиранию), соли бария, цинка, стронция и др. (обеспечивают рентгеноконтрастность). Жидкость – водный раствор сополимера поликарбоновых кислот (акриловой, итаконовой, малеиновой) с добавкой изомера винной кислоты. В случае Аква-цементов (только порошок, который замешивается на дистиллированной воде) поликарбоновые кислоты входят в состав исходного порошка в виде кристаллов. В металлосодержащих стеклоиономерных цементах в состав порошка дополнительно вводятся металлические добавки и сплавы (серебро-олово, серебро-палладий). Отвердение классических стеклоиономерных цементов происходит по типу ионообменной реакции (отсюда название – стеклоиономер): ионы водорода (присутствующие в водном растворе поликарбоновых кислот) обмениваются с ионами металлов (кальция, алюминия) стекла, ионы кальция и алюминия связывают гидроксильные группы цепей поликарбоновых кислот (образуется матрица полиакрилата металла, в которой расположены непрореагировавшие частицы стекла). В начальной стадии отвердения достаточно быстро формируются кальциевые полиакриловые цепочки. Эта реакция обеспечивает схватывание цемента и длится несколько минут. Однако эффективность связывания ионами кальция недостаточно высокая и на ранних стадиях отвердевания кальций-полиакриловые цепочки могут растворяться в воде (поэтому цемент должен быть на это время защищен от влаги). Когда ионы кальция прореагировали, вступают в реакцию ионы алюминия и формируются алюминий-полиакриловые цепочки. Трехвалентная природа алюминия (в отличие от двухвалентной кальция) обеспечивает более высокую степень поперечного сшивания и образование пространственной структуры. Именно на этом этапе происходит формирование окончательной матрицы цемента. Завершение второй фазы наступает примерно через 2-3 недели (ускорить процесс отвердения позволяет применение гибридных стеклоиономеров, которые уже на начальном этапе фотополимеризации в течение ок. 40 сек набирают достаточную прочность). Дополнительно на поверхности стеклянных частиц происходит образование силикагеля (прочная структура). В итоге окончательная структура отвердевшего стеклоиономерного цемента представляет собой частицы стекла, окруженные силикагелем и расположенные в матрице поперечносшитых молекул поликарбоновых кислот (полиакрилата металла).
  2. Гибридные стеклоиономерные цементы (стеклоиономерные цементы, модифицированные полимером). Имеют двойной (химический и световой) или тройной механизм отвердевания. Порошок – мелкодисперсное алюмосиликатное стекло (как и в случае классических стеклоиономерных цементов), иногда с добавками кристаллов сополимера поликарбоновых кислот (как и в случае Аква-цементов). Жидкость – водный раствор сополимера поликарбоновых кислот (акриловой, итаконовой, малеиновой), концы молекул которых модифицированы присоединением ненасыщенных метакрилатных групп (как у диметакрилатов композитных пломбировочных материалов). В состав жидкости входит также винная кислота, гидроксиэтилметакрилат и камфарохинон (фотоинициатор). Первой стадией механизма отвердения является реакция связывания концевых ненасыщенных метакрилатных групп поликарбоновых кислот за счет фотоинициированного образования концевых радикалов (фотополимеризация). Вторая стадия – обычная классическая реакция сшивания макромолекул поликислот ионами металлов. Гибридные стеклоиономерные цементы (с двойным механизмом отверждения) имеют улучшенные физико-химические качества, но и существенный недостаток: в участках, недоступных для проникновения света фотополимеризующей лампы, отвердение происходит только за счет классической химической реакции (что сказывается на физико-химических характеристиках стеклоиономерных цементов). Этого недостатка лишены стеклоиономерные цементы с тройным механизмом отверждения (первые две стадии – как у стеклоиономерных цементов двойного отверждения, а третья стадия – каталитически инициированная полимеризация концевых метакрилатных групп поликарбоновых кислот без воздействия света).
Читайте так же:
Бабинское месторождение цементного сырья

Указанная классификация условна, поскольку в последнее время появилось много модифицированных стеклоиономерных цементов: с добавками полимерных смол, со специально обработанными мелкодисперсными частицами стекла и т.д.

Очень важное достоинство стеклоиономерных цементов – хорошая химическая адгезия к тканям зуба. Считается, что это происходит вследствие образования хелатных связей между гидроксильными группами поликарбоновых кислот и ионами кальция поверхностного гидроксиапатита (аналогично классической химической реакции сшивания при отвердении стеклоиономерных цементов), а также вследствие образования водородных связей карбоксилатных групп с коллагеном (органический компонент зубных тканей).

Среди других достоинств стеклоиономерных цементов – хорошая химическая адгезия к другим пломбировочным материалам (в т.ч. композитам), высокая биологическая совместимость с тканями зуба, близкие к тканям зуба характеристики теплового расширения (что предохраняет от нарушения краевого прилегания пломб), низкий модуль упругости (что позволяет использовать стеклоиономерные цементы в качестве прокладок или базы под реставрацию зубов композитными материалами).

Стеклоиономерные цементы обладают биоактивностью, что связано не только с химической адгезией к структурам зуба, но и с продолжительным фторвыделением и выделением других ионов (алюминия, кальция, стронция; способствуют реминерализации структур зуба при кариозном поражении). Все остальные реставрационные материалы (например, композиты) не являются биоактивными и служат только для восстановления формы и эстетики зуба. В начальный период (около 2-х суток) отвердения стеклоиономерных цементов происходит быстрое высвобождение ионов фтора, которые остаются свободными в пределах стеклоиономерной матрицы. Свободное движение (диффузия) ионов фтора обусловлено тем, что они структурно не связаны с матрицей цемента с способны к миграции в полость рта и в ткани зуба, смежные с реставрацией (пломбой), оказывая при этом кариесостатическое и антибактериальное действие. Выделение ионов фтора (в меньших количествах) происходит и в дальнейшем в течение длительного периода (пролонгированный процесс, более 1 года). Диффузия ионов фтора в дентин и эмаль вызывает усиление минерализации твердых тканей зуба, уменьшение проницаемости дентина, реминерализацию начальных кариозных повреждений и остановку или замедление оставшегося кариозного процесса. Твердая ткань под стеклоиономерным цементом оказывается более плотной, гиперминерализованной. Кроме того, стеклоиономерные цементы способны адсорбировать (поглощать) ионы фтора при контакте с фторсодержащими материалами (зубными пастами, гелями, растворами для полосканий), что приводит к повторному обогащению стеклоиономерной реставрации (пломбы) ионами фтора. Поступившие ионы фтора затем медленно высвобождаются в полость рта и ткани зуба, смежные с реставрацией (пломбой). Таким образом, стеклоиономерный цемент действует как резервуар (депо) ионов фтора. В последние годы стеклоиономерные цементы все чаще используют для герметизации фиссур (в первую очередь – вследствие реминерализующего действия на эмаль в области фиссуры за счет фторовыделения).

Типичными представителями современных стеклоиономерных цементов являются следующие.

Фуджи Плюс (Fuji Plus) – усиленный композитом стеклоиономерный цемент. Используют для постоянного цементирования металлических, металлокерамических и металлокомпозитных коронок и мостовидных протезов, вкладок и накладок из композитов, керамики и стоматологических сплавов.

Фуджи I (Fuji I) – стеклоиономерный цемент для постоянного цементирования ортопедических коронок, мостовидных протезов, вкладок, накладок из любых стоматологических сплавов.

Фуджи IX (Фуджи 9, Fuji IX) – классический стеклоиономерный реставрационный (пломбировочный) цемент пакуемой вязкости (термин “пакуемый” означает сохранение формы, приданной материалу еще до стадии его отверждения, что позволяет врачу-стоматологу легко выполнять этап предварительного моделирования). Вследствие высокой устойчивости к истиранию применяют для реставраций (пломбирования) в области жевательных зубов, реконструкции коронковой части зуба.

<p”> Фуджи Лайн (Fuji Lining) – светоотверждаемый стеклоиономерный цемент. Имеет низкую усадку при отвердевании, поэтому используют в качестве изолирующей прокладки.

Ионозит бейслайн (Ionosit Baseliner) – светоотверждаемый гибридный стеклоиономерный цемент (чаще относят к компомерам). Однокомпонентный материал, который при отверждении слегка расширяется и поэтому используется в качестве изолирующей прокладки, компенсирующей полимеризационную усадку композитов. По физическим свойствам приблизительно в 3 раза прочнее, чем традиционные стеклоиономерные цементы.

ТаймЛайн (TimeLine) – светоотверждаемый стеклоиономерный материал. Используют в качестве изолирующей прокладки под композитные пломбы (реставрации).

Кор Макс (CORE MAX) – стеклоиономерный цемент, усиленный композитом (иногда относят к композитам химического отверждения). Особо прочный цемент для восстановления коронковой части зуба с использованием штифтов. Релайкс Леи (RelyX LUTING) – гибридный стеклоиономерный цемент химического отверждения. Используют для постоянного цементирования ортопедических коронок, вкладок из керамики, металлов, композитов, цементирования мостовидных протезов, корневых штифтов. Ионосил (Ionoseal) – светоотверждаемый стеклоиономерный цемент. Отличается высокой прочностью на разрыв и устойчивостью к сжатию. Используют для изолирующих прокладок (имеет хорошую адгезию к композитным материалам). Витремер (Vitremer) – эстетичный гибридный стеклоиономерный материал с тройным механизмом отверждения (светополимеризация, химическая полимеризация, классическая стеклоиономерная реакция). Используют для восстановления коронковой части зуба под протезирование, эстетического пломбирования и реставрации.

Сияющая голливудская улыбка от ведущих специалистов терапевтической стоматологии. Запишитесь на прием!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector